Abstract

We previously reported that ubiquitin-specific protease (USP) 2 in macrophages down-regulates genes associated with metabolic diseases, suggesting a putative anti-diabetic role for USP2 in macrophages. In this study, we evaluate this role at both cellular and individual levels. Isolated macrophages forcibly expressing Usp2a, a longer splicing variant of USP2, failed to modulate the insulin sensitivity of 3T3-L1 adipocytes. Similarly, macrophage-selective overexpression of Usp2a in mice (Usp2a transgenic mice) had a negligible effect on insulin sensitivity relative to wild type littermates following a three-month high-fat diet. However, Usp2a transgenic mice exhibited fewer M1 macrophages in their mesenteric adipose tissue. Following a six-month high-fat diet, Usp2a transgenic mice exhibited a retarded progression of insulin resistance in their skeletal muscle and liver, and an improvement in insulin sensitivity at an individual level. Although conditioned media from Usp2a-overexpressing macrophages did not directly affect the insulin sensitivity of C2C12 myotubes compared to media from control macrophages, they did increase the insulin sensitivity of C2C12 cells after subsequent conditioning with 3T3-L1 cells. These results indicate that macrophage USP2A hampers obesity-elicited insulin resistance via an adipocyte-dependent mechanism.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.