Abstract

The purpose of this study was to determine whether macrophages were directly stimulated by tumor cells to release TNF-alpha. We found that several murine and human tumor cell lines and crude cell membrane vesicles prepared from these tumor cells stimulated pyran copolymer-elicited murine peritoneal macrophages (PEM) to release as much as 362 +/- 69 (mean +/- SE) units of TNF activity per 10(6) PEM in vitro. By contrast, several nontransformed cells, including Con A-stimulated splenic leukocytes and CTLL cloned T lymphocytes, failed to stimulate PEM to release TNF. Antibody and complement-mediated depletion of macrophages abrogated the release of TNF; whereas depletion of NK cells and T lymphocytes did not affect tumor-stimulated TNF release, suggesting that tumor cells directly stimulated PEM to release TNF. Tumor-stimulated TNF release was rapid, peaking in 2 to 3 h with subsequent loss of TNF activity from the medium. In the absence of tumor, PEM contained detectable levels of TNF mRNA, but did not release functionally active TNF. The addition of P815 tumor cell membrane vesicles increased both TNF mRNA levels, peaking at 1 to 2 h, and release of high levels of TNF activity. Confounding effects of endotoxin were excluded by the resistance of tumor-stimulated TNF release to neutralization by polymixin B, and by the equivalent responsiveness of PEM from endotoxin-resistant (C3H/HeJ) and endotoxin-sensitive (C3H/HeN) mice to stimulation by tumor cells. Factors which stimulated PEM to release TNF could be extracted from tumor cell membrane, with 77% of the macrophage-stimulating activity recoverable in aqueous phase. In conclusion, we have demonstrated that some tumor cell lines express specific characteristics which can be recognized by macrophages and which stimulate macrophages to release TNF.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.