Abstract

The abundant M1 macrophages in the joint synovium were the main factors that exacerbate rheumatoid arthritis (RA) by secreting various types of inflammatory cytokines. Here, we found that cGAS-STING, an important pro-inflammatory pathway, was significantly up-regulated in RA, enabling it be the potential target for RA therapy. Therefore, in this work, we developed M1 macrophages targeted micelles capable of cGAS-STING pathway inhibition for the smart treatment of RA. The folic acid (FA) and lauric acid (LA) were modified on dextran to obtain an amphiphilic polymer (FDL), which was subsequently applied to encapsulate triptolide (TP), forming FDL@TP nanomicelles. The FDL@TP could target the joint and enhance the cell uptake of TP by M1 macrophages (overexpressing folate receptor-β), which also reduces the side effects of TP on normal tissues. In M1 macrophages, the released TP, acted as an anti-inflammatory and immunosuppressant, obviously down-regulated the expressions of cGAS and STING protein, and thus reduced the secretion of TNF-α, IL-1β, and IL-6. Importantly, compared with the same dose of free TP, FDL@TP could significantly enhance the anti-inflammatory effect. Therefore, FDL@TP nanomicelles were believed to be superior candidates for the clinical treatment of RA.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.