Abstract

To systematically identify novel gene functions essential for osteogenesis and skeletal mineralization, we performed a forward genetic mutagenesis screen in zebrafish and isolated a mutant that showed delayed skeletal mineralization. Analysis of the mutant phenotype in an osterix:nuclear-GFP transgenic background demonstrated that mutants contain osterix-expressing osteoblasts comparable to wild-type embryos. Positional cloning revealed a premature stop mutation in the macrophage-stimulating protein (msp) gene, predicted to result in a biologically inactive protein. Analysis of the embryonic expression pattern for the receptor for Msp, Ron, shows specific expression in the corpuscles of Stannius, a teleost-specific organ that produces stanniocalcin, a pivotal hormone in fish calcium homeostasis. Knockdown of Ron resulted in identical phenotypes as observed in msp mutants. Msp mutant embryos could be rescued by excess calcium. Consistent with a role for Msp/Ron in calcium homeostasis, calcium-regulating factors, such as pth1, pth2, stc1l, and trpv5/6 were significantly affected in msp mutant larvae. While Msp and Ron have previously been shown to play a critical role in a wide variety of biological processes, we introduce here the Msp/Ron signaling axis as a previously unappreciated player in calcium homeostasis and embryonic skeletal mineralization.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.