Abstract

The Mycobacterium tuberculosis complex (MTBC) is a group of related pathogens that cause tuberculosis (TB) in mammals. MTBC species are distinguished by their ability to sustain in distinct host populations. While Mycobacterium bovis (Mbv) sustains transmission cycles in cattle and wild animals and causes zoonotic TB, M. tuberculosis (Mtb) affects human populations and seldom causes disease in cattle. The host and pathogen determinants underlying host tropism between MTBC species are still unknown. Macrophages are the main host cell that encounters mycobacteria upon initial infection, and we hypothesised that early interactions between the macrophage and mycobacteria influence species-specific disease outcome. To identify factors that contribute to host tropism, we analysed blood-derived primary human and bovine macrophages (hMϕ or bMϕ, respectively) infected with Mbv and Mtb. We show that Mbv and Mtb reside in different cellular compartments and differentially replicate in hMϕ whereas both Mbv and Mtb efficiently replicate in bMϕ. Specifically, we show that out of the four infection combinations, only the infection of bMϕ with Mbv promoted the formation of multinucleated giant cells (MNGCs), a hallmark of tuberculous granulomas. Mechanistically, we demonstrate that both MPB70 from Mbv and extracellular vesicles released by Mbv-infected bMϕ promote macrophage multinucleation. Importantly, we extended our in vitro studies to show that granulomas from Mbv-infected but not Mtb-infected cattle contained higher numbers of MNGCs. Our findings implicate MNGC formation in the contrasting pathology between Mtb and Mbv for the bovine host and identify MPB70 from Mbv and extracellular vesicles from bMϕ as mediators of this process.

Highlights

  • Host tropism relates to the range of host species that a pathogen can sustain within, requiring the pathogen to infect, replicate and transmit in this host

  • We identified host and pathogen mechanistic drivers of multinucleated cell formation: MPB70 as the M. bovis factor and bovine macrophage extracellular vesicles

  • We have identified host and pathogen factors that contribute to host tropism in human/bovine tuberculosis

Read more

Summary

Introduction

Host tropism relates to the range of host species that a pathogen can sustain within, requiring the pathogen to infect, replicate and transmit in this host. Mtb is an obligate pathogen with distinct tropism for humans, transmitting between individuals via aerosols. Infection generally occurs in terminal lung airways, where the bacillus is taken up by alveolar macrophages before disseminating to other organs. Regardless of which tissues are involved, the immune response against the bacillus progressively leads to the formation of granulomas, where the bacilli can either disseminate from or persist [2,3,4]. Bovine TB is caused by M. bovis (Mbv) and shows a broader host tropism, infecting and transmitting between a variety of livestock and wildlife populations [5]. Mbv poses a risk as a zoonotic pathogen, representing a serious threat to human health [1]. In 2005, the WHO declared bovine TB as the most neglected zoonotic disease threatening human health [6,7,8]

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call