Abstract
Inherited bacterial resistance and biofilm-induced local immune inactivation are important factors in the failure of antibiotics to fight against bacterial infections. Herein, antibiotic-loaded mesoporous nanozymes (HA@MRuO2 -Cip/GOx) are fabricated for overcoming bacterial resistance, and activating the local immunosuppression in biofilm microenvironment (BME). HA@MRuO2 -Cip/GOx are prepared by physical adsorption between ciprofloxacin (Cip) or glucose oxidase (GOx) and MRuO2 NPs, and modified with hyaluronic acid (HA). In vitro, HA@MRuO2 -Cip/GOx cleaves extracellular DNA (eDNA) to disrupt biofilm, thereby enhancing Cip kill planktonic bacteria. Furthermore, HA@MRuO2 -Cip/GOx can induce polarization and enhance phagocytosis of a macrophage-derived cell line. More importantly, in vivo therapeutic performance confirms that HA@MRuO2 -Cip/GOx can trigger macrophage-related immunity, and effectively alleviate MRSA-bacterial lung infections. Accordingly, nanocatalytic therapy combined with targeted delivery of antibiotics could enhance the treatment of bacterial infections.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.