Abstract

Macrophages have been identified in the periodontium. Data have phenotypically described these cells, demonstrated changes with progressing periodontal disease, and identified their ability to function in antigen-presentation critical for adaptive immune responses to individual oral bacterium. Recent evidence has emphasized an important role for the plasticity of macrophage phenotypes, not only in the resulting function of these cells in various tissues, but also clear differences in the stimulatory signals that result in M1 (classical activation, inflammatory) and M2 (alternative activation/deactivated, immunomodulatory) cells. This investigation hypothesized that the oral pathogens, Porphyromonas gingivalis and Aggregatibacter actinomycetemcomitans induce M1-type cells, while oral commensal bacteria primarily elicit macrophage functions consistent with an M2 phenotype. However, we observed that the M1 output from P. gingivalis challenge, showed exaggerated levels of pro-inflammatory cytokines, with a much lower production of chemokines related to T-cell recruitment. This contrasted with A. actinomycetemcomitans infection that increased both the pro-inflammatory cytokines and T-cell chemokines. Thus, it appears that P. gingivalis, as an oral pathogen, may have a unique capacity to alter the programming of the M1 macrophage resulting in a hyperinflammatory environment and minimizing the ability for T-cell immunomodulatory influx into the lesions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.