Abstract

Duchenne muscular dystrophy (DMD) is characterized by chronic skeletal muscle necrosis, leading to muscle regeneration failure and fibrosis. Although macrophages (MPs) are normally essential for muscle regeneration, dysregulated MP function promotes pathological muscle remodelling. Infiltrating MPs can be predominantly pro-inflammatory (M1 biased), anti-inflammatory (M2 biased) or of a mixed phenotype and can originate from the adult bone marrow (monocyte dependent) or embryonic precursors (monocyte independent). In mdx mice (genetic model of DMD) lacking either Toll-like receptor (Tlr) 2 or Tlr4, it is found that MP infiltration of dystrophic muscle is significantly reduced and that the MP phenotype is shifted toward a more anti-inflammatory profile. This is accompanied by significant improvements in muscle histology and force production. Lack of the chemokine receptor CCR2, which impedes monocyte release from the bone marrow, leads to similar beneficial effects in mdx mice. Evidence was also found for Tlr4-regulated induction of trained innate immunity in MPs cultured from the bone marrow of mdx mice before their entry into the muscle. These MPs exhibit epigenetic and metabolic alterations, accompanied by non-specific hyper-responsiveness to multiple stimuli, which is manifested by potentiated upregulation of both pro- and anti-inflammatory genes. In summary, exaggerated recruitment of monocyte-derived MPs and signs of trained innate immunity at the level of the bone marrow are features of the immunophenotype associated with dystrophic muscle disease. These phenomena are regulated by Toll-like receptors that bind endogenous damage-associated molecular pattern (DAMP) molecules, suggesting that DAMP release from dystrophic muscles modulates MP plasticity at the bone marrow level through Toll-like receptor-driven mechanisms.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call