Abstract

During mycobacterial infections, pathogenic mycobacteria manipulate both host immune and stromal cells to establish and maintain a productive infection. In humans, non-human primates, and zebrafish models of infection, pathogenic mycobacteria produce and modify the specialized lipid trehalose 6,6'-dimycolate (TDM) in the bacterial cell envelope to drive host angiogenesis toward the site of forming granulomas, leading to enhanced bacterial growth. Here, we use the zebrafish-Mycobacterium marinum infection model to define the signaling basis of the host angiogenic response. Through intravital imaging and cell-restricted peptide-mediated inhibition, we identify macrophage-specific activation of NFAT signaling as essential to TDM-mediated angiogenesis invivo. Exposure of cultured human cells to Mycobacterium tuberculosis results in robust induction of VEGFA, which is dependent on a signaling pathway downstream of host TDM detection and culminates in NFATC2 activation. As granuloma-associated angiogenesis is known to serve bacterial-beneficial roles, these findings identify potential host targets to improve tuberculosis disease outcomes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call