Abstract
Macrophage migration inhibitory factor (MIF) is a ubiquitous protein playing various immunologic, enzymatic, and hormonal roles. MIF was originally identified for its capacity to inhibit the random movement of macrophages in vitro. MIF is widely expressed in many tissues with particularly high levels in the nervous system. Using the reversed-phase HPLC, N-terminal microsequence analysis, and database searching, we have identified in bovine brain several MIF-like proteins. According to mass spectral analysis, the molecular masses for three of them were determined as 12,369.2, 12,299.7, and 9,496.2 Da. In addition, we have identified another MIF-related protein (29,568.9 Da) by Western blotting using anti-MIF antibody raised to MIF (having an apparent molecular weight of 12 kDa) isolated to homogeneity from bovine brain cytosol. The modified purification procedure was mainly based on exclusion- and ion-exchange chromatography. Using p-hydroxyphenylpyruvic acid as a substrate, we have demonstrated tautomerase activity of the isolated MIF. The N-terminal sequences for all MIF-like proteins were found to be identical. Several other higher molecular weight putative MIF-related proteins were also revealed in the bovine brain cytosol extract. A multifunctional nature of MIF is suggested to be a result of its occurrence in different oligomerization states in a wide variety of tissues and cells.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.