Abstract
Development of innovative nanomedicine formulations to traverse the blood-brain barrier (BBB) for effective theranostics of glioma remains a great challenge. Herein, we report the creation of macrophage membrane-camouflaged multifunctional polymer nanogels coloaded with manganese dioxide (MnO2) and cisplatin for magnetic resonance (MR) imaging-guided chemotherapy/chemodynamic therapy (CDT) of orthotopic glioma. Redox-responsive poly(N-vinylcaprolactam) (PVCL) nanogels (NGs) formed via precipitation polymerization were in situ loaded with MnO2 and physically encapsulated with cisplatin to have a mean size of 106.3 nm and coated with macrophage membranes to have a good colloidal stability. The generated hybrid NGs display dual pH- and redox-responsive cisplatin and Mn(II) release profiles and can deplete glutathione (GSH) rich in tumor microenvironment through reaction with disulfide-containing cross-linkers within the NGs and MnO2. The thus created Mn(II) enables enhanced CDT through a Fenton-like reaction and T1-weighted MR imaging, while the loaded cisplatin not only exerts its chemotherapy effect but also promotes the reactive oxygen species generation to enhance the CDT efficacy. Importantly, the macrophage membrane coating rendered the hybrid NGs with prolonged blood circulation time and ability to traverse BBB for specific targeted chemotherapy/CDT of orthotopic glioma. Our study demonstrates a promising self-adaptive and cooperative NG-based nanomedicine platform for highly efficient theranostics of glioma, which may be extended to tackle other difficult cancer types.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.