Abstract

Macrophages are commonly observed at the biomaterial-tissue interface and interact with the extracellular matrix (ECM) mainly by integrin receptors to play a critical role in ECM turnover by secreting matrix metalloproteinases (MMPs). To investigate beta1 and beta3 containing integrin-mediated adhesion and subsequent MMP-2/-9 protein and gene expression in human blood-derived monocytes, biofunctional peptides immobilized onto flexible polyethylene glycol (PEG) arms were grafted onto a gelatin-based interpenetrating network (IPN). Adherent monocyte density was dramatically greater in the presence of RGD immobilized onto flexible PEG arms of the gelatin-based IPN. Pretreatment of monocytes with either anti-integrin beta1 or beta3 led to a significant decrease in adherent cell density on RGD-PEG-grafted IPNs. MMP-2 and MMP-9 protein and MMP-9 mRNA expression increased in the presence of IPNs initially, independent of ligand identity. Anti-integrin beta1 or beta3 antibody pretreatment of monocytes led to a general decrease in MMP-2/-9 protein expression. These results demonstrate the importance of beta1 and beta3 containing integrins in mediating monocyte adhesion onto RGD immobilized onto flexible PEG arms of the IPN. The results also reveal that MMP-2/-9 protein and gene expression is influenced by the presence of gelatin and not the ligands immobilized on the PEG arms of the IPN.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.