Abstract

BackgroundM2 macrophages and exosomes from adipose-derived stem cells (ASCs) are both reported to promote angiogenesis. However, the possible synergistic effects between exogenous exosomes and endogenous M2 macrophages are poorly understood.MethodsExosomes were isolated from conditioned medium of normoxic and hypoxic ASCs using the combined techniques of ultrafiltration and size-exclusion chromatography and were identified with nanoparticle tracking analysis and immunoblotting for exosomal markers. Macrophages were collected from the mouse peritoneal cavity. M1 and M2 macrophages were detected by immunoblotting for the intracellular markers inducible nitric oxide synthase (iNOS) and arginase-1 (Arg-1) and by flow cytometry for the surface markers F4/80, CD86, and CD206. Murine models of Matrigel plug and hindlimb ischemia were employed as in vivo angiogenic assays.ResultsWhen M1 macrophages were treated with exosomes from normoxic ASCs (Nor/Exo), and particularly from hypoxic ASCs (Hyp/Exo), the expression of the M1 marker iNOS decreased, and the M2 marker Arg-1 increased in a time- and dose-dependent manner. Additionally, a decrease in the M1 surface marker CD86 and an increase in the M2 surface marker CD206 were observed, which suggested that M1 macrophages were polarized to an M2-like phenotype. Conditioned medium from these M2-like macrophages presented lower levels of proinflammatory cytokines and higher levels of proangiogenic factors and promoted endothelial cell proliferation, migration, and tube formation. Furthermore, M2 polarization and angiogenesis were induced upon the administration of exosomes in mouse Matrigel plug and hindlimb ischemia (HLI) models. Interestingly, these exosomal effects were attenuated by using a colony stimulating factor 1 receptor (CSF-1R) inhibitor, BLZ945, in vitro and in vivo. Downregulation of microRNA-21 (miR-21) in hypoxic ASCs reduced the exosomal effects on M2 polarization, Akt phosphorylation, and CSF-1 secretion. A similar reduction in exosomal activity was also observed when exosomes were administered along with BLZ945.ConclusionOur findings provide evidence that exosomes from ASCs polarize macrophages toward an M2-like phenotype, which further enhances the exosomal proangiogenic effects. Exosomal delivery of miR-21 and positive feedback of secreted CSF-1 may be involved in macrophage polarization.

Highlights

  • Ischemic cardiovascular and cerebrovascular diseases continue to represent the most common cause of death in modern society

  • When M1 macrophages were treated with exosomes from normoxic Adipose-derived stem cell (ASC) (Nor/Exo), and from hypoxic ASCs (Hyp/Exo), the expression of the M1 marker inducible nitric oxide synthase (iNOS) decreased, and the M2 marker Arg-1 increased in a time- and dosedependent manner

  • Our findings provide evidence that exosomes from ASCs polarize macrophages toward an M2like phenotype, which further enhances the exosomal proangiogenic effects

Read more

Summary

Introduction

Ischemic cardiovascular and cerebrovascular diseases continue to represent the most common cause of death in modern society. To address this concern, research on therapeutic angiogenesis has been evolving for the past decades [1]. The protein/gene approach, stem/progenitor cell approach, and subsequent microvesicle/exosome approach have been employed as therapies for ischemic diseases [2, 3]. Our laboratory and others have demonstrated that exosomes from ASCs have angiogenic effects [5, 6]. M2 macrophages and exosomes from adipose-derived stem cells (ASCs) are both reported to promote angiogenesis. The possible synergistic effects between exogenous exosomes and endogenous M2 macrophages are poorly understood

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.