Abstract

Patients with atopic dermatitis (AD) are prone to disseminated viral skin infections and therefore are not vaccinated against smallpox because of potential complications. Macrophage inflammatory protein 3alpha (MIP-3alpha) is a C-C chemokine expressed by keratinocytes that exhibits antimicrobial activity against bacteria and fungi; however, its role in antiviral innate immunity is unknown.Evaluate the level of MIP-3alpha in AD skin and its role in the innate immune response to vaccinia virus (VV).Macrophage inflammatory protein 3alpha levels were evaluated using real-time RT-PCR, immunodot-blot, and immunohistochemistry. The antiviral activity of MIP-3alpha was determined using a standard viral plaque assay.Macrophage inflammatory protein 3alpha gene expression was significantly (P < .01) decreased in AD skin (0.21 +/- 0.05 ng MIP-3alpha/ng glyceraldehyde-3-phosphate dehydrogenase) compared with psoriasis skin (0.67 +/- 0.13). This was confirmed at the protein level using immunohistochemistry. We further demonstrate that T(H)2 cytokines downregulate MIP-3alpha expression. The importance of MIP-3alpha in the innate immune response against VV was established by first demonstrating that MIP-3alpha exhibits activity against VV. Second, VV replication was significantly increased (P < .01) in keratinocytes treated with an antibody to neutralize MIP-3alpha.The current study demonstrates that MIP-3alpha exhibits antiviral activity against VV and demonstrates the importance of MIP-3alpha in the innate immune response against VV. In addition, AD skin is deficient in MIP-3alpha, in part because of the overexpression of T(H)2 cytokines in AD skin.MIP-3alpha deficiency in AD skin contributes to patients' increased propensity toward eczema vaccinatum. Increasing MIP-3alpha or neutralizing T(H)2 cytokines could prevent adverse reactions in patients with AD after smallpox vaccination.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.