Abstract

Heterotopic ossification (HO) is a pathological bone formation process caused by musculoskeletal trauma. HO is characterized by aberrant endochondral ossification and angiogenesis. Our previous studies have indicated that macrophage inflammation is involved in traumatic HO formation. In this study, we found that macrophage infiltration and TGF-βsignaling activation are presented in human HO. Depletion of macrophages effectively suppressed traumatic HO formation in a HO mice model, and macrophage depletion significantly inhibited the activation of TGF-β/Smad2/3 signaling. In addition, the TGF-β blockade created by a neutralizing antibody impeded ectopic bone formation in vivo. Notably, endochondral ossification and angiogenesis are attenuated following macrophage depletion or TGF-β inhibition. Furthermore, our observations on macrophage polarization revealed that M2 macrophages, rather than M1 macrophages, play a critical role in supporting HO development by enhancing the osteogenic and chondrogenic differentiation of mesenchymal stem cells. Our findings on ectopic bone formation in HO patients and the mice model indicate that M2 macrophages are an important contributor for HO development, and that inhibition of M2 polarization or TGF-β activity may be a potential method of therapy for traumatic HO.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call