Abstract

Macrophage colony-stimulating factor-1 receptor (CSF-1R) is a transmembrane tyrosine kinase receptor, which is abnormally expressed in invasive breast cancer. Small cohort studies have demonstrated that increased expression of CSF-1R is associated with ipsilateral breast cancer recurrence. Correlation with survival has not been reported. Our aim was to further evaluate the role of CSF-1R in breast cancer, by studying the expression of CSF-1R in a large cohort of clinical specimens. Tissue microarrays containing 301 node-negative and 280 node-positive cases were used. Immunohistochemical staining was performed and correlated with overall survival, nodal status, and other clinicopathological data. CSF-1R expression was strongly associated with nodal status. Of the node-negative cases, 114 (38.9%) stained positive for CSF-1R, whereas 189 (67.5%) of the node-positive cases expressed CSF-1R (P < 0.0001). CSF-1R expression is also associated with larger tumor size (P = 0.02). Positive staining was strongly associated with decreased survival (P = 0.0003). Among node-negative patients, CSF-1R expression was associated with decreased overall survival (P = 0.045), whereas among node-positive patients, it was not (P = 0.47). In multivariate analysis, CSF-1R was not independent of nodal status as a predictor of survival. CSF-1R expression is a strong predictor of poor outcome in nonmetastatic breast cancer. It is significantly more frequently expressed in patients with nodal involvement. Among the node-negative patients, it has a stronger association with survival than among the node-positive patients. Our findings support other preclinical findings that CSF-1R may be involved in local invasion and metastasis. Thus, this receptor may be an effective target for therapeutic agents.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.