Abstract
Fabrication of ingenious nanomedicines to penetrate the blood-brain barrier (BBB) and blood-brain-tumor barrier (BBTB) for efficient glioblastoma (GBM) therapy remains a big challenge. In this work, macrophage-cancer hybrid membrane-camouflaged nanoplatforms were fabricated for target gene silencing-enhanced sonodynamic therapy (SDT) of GBM. The J774.A.1 macrophage cell membrane and the U87 glioblastoma cell membrane were fused to create a hybrid biomembrane (JUM) with good BBB penetration and glioblastoma targeting capability for camouflaging. The ZIF-8 nanoparticles were synthesized for indocyanine green (ICG) and HIF-1α siRNA encapsulation (ICG-siRNA@ZIF-8, ISZ) with a high loading efficiency. After accumulation in the tumor sites, the pH sensitivity of the nanoplatform enabled release of ICG and HIF-1α siRNA in the tumor cells. Then, the expression of HIF-1α could be efficiently inhibited by the released HIF-1α siRNA to increase the SDT efficiency under hypoxic conditions. In vitro and in vivo experiments revealed that ISZ@JUM showed good BBB penetration and brain tumor-targeting capability and could achieve effective gene silencing-enhanced SDT, demonstrating great promise for clinical applications.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.