Abstract

Phagocytosis provides a critical first line of defense against invading pathogens. Engagement of particles through receptor-mediated binding precedes internalization and induction of cellular antimicrobial responses. Phagocytes have the capacity to differentially regulate binding and internalization processes through changes in their receptor profile and modulation of downstream events. This is necessary for the intricate control of phagocytic antimicrobial responses. Several methods are available for evaluation of phagocytosis. Unfortunately, none allow for accurate quantitation of both binding and internalization events. To overcome these limitations, we have developed a novel phagocytosis assay based on a multi-spectral imaging flow cytometry platform. This assay discriminates between internalized and surface-bound particles in a statistically robust manner and allows multi-parametric analysis of phagocytosis and downstream anti-microbial responses. We also devised a novel approach for examination of phagolysosome fusion, which provides an improved capacity for quantitative assessment of phagolysosome fusion in mixed populations of intact cells. Importantly, our approaches are likely amenable to a broad range of comparative model systems based on our examination of murine RAW 264.7 cells and a goldfish primary kidney macrophage (PKM) model system. The latter allowed us to examine the evolutionary conservation of phagocytic antimicrobial responses in a lower vertebrate model. While it has been previously reported that mixed populations of these macrophage cultures are phagocytic, it remained unclear if sub-populations within them contributed differentially to this activity. In accordance with higher vertebrate models, we found that differentiation along the macrophage pathway leads to an increased capacity for phagocytosis in goldfish PKM. Interestingly, cellular activation differentially regulated particle internalization in PKM monocyte and mature macrophage subsets. We also found differential regulation of phagolysosome fusion and downstream production of reactive oxygen intermediates (ROI). The temporal activation of specific phagocytic antimicrobial responses at distinct stages of PKM differentiation suggests specialization within the macrophage compartment early in evolution, geared to meet specific host immunity requirements within specialized niches.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.