Abstract

In order to evaluate the macroscopic performance of friction stir welded automotive tailor-welded blank (TWB) sheets, the hardening behavior, anisotropic yielding properties and forming limit diagram were characterized both for base (material) and weld zones. In order to describe the Bauschinger and transient hardening behaviors as well as permanent softening during reverse loading, the modified Chaboche type combined isotropic–kinematic hardening law was applied. As for anisotropic yielding, the non-quadratic anisotropic yield function, Yld2000-2d, was utilized for base material zones, while isotropy was assumed for weld zones for simplicity. As for weld zones, hardening properties were obtained using the rule of mixture and selectively by direct measurement using sub-sized specimens. Forming limit diagrams were measured for base materials but calculated for weld zones based on Hill’s bifurcation and M–K theories. In this work, four automotive sheets were considered: aluminum alloy 6111-T4, 5083-H18, 5083-O and dual-phase steel DP590 sheets, each having one or two thicknesses. Base sheets with the same and different thicknesses were friction-stir welded for tailor-welded blank (TWB) samples.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call