Abstract

Multiway data extend two-way matrices into higher-dimensional tensors, often explored through dimensional reduction techniques. In this paper, we study the Parallel Factor Analysis (PARAFAC) model for handling multiway data, representing it more compactly through a concise set of loading matrices and scores. We assume that the data may be incomplete and could contain both rowwise and cellwise outliers, signifying cases that deviate from the majority and outlying cells dispersed throughout the data array. To address these challenges, we present a novel algorithm designed to robustly estimate both loadings and scores. Additionally, we introduce an enhanced outlier map to distinguish various patterns of outlying behavior. Through simulations and the analysis of fluorescence Excitation-Emission Matrix (EEM) data, we demonstrate the robustness of our approach. Our results underscore the effectiveness of diagnostic tools in identifying and interpreting unusual patterns within the data.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.