Abstract

For a suspension of rigid dumbbells, in any simple shear flow, we recently solved for the diffusion equation for the orientation distribution function by a power series expansion in the shear rate magnitude. In this paper, we focus specifically on large-amplitude oscillatory shear flow, for which we extend the orientation distribution function to the 6th power of the shear rate amplitude. We arrive at the Fourier solution for each harmonic contribution to the total orientation distribution function, separating each harmonic into its coefficients in and out-of-phase with cos nωt, ψn′ and ψn″, respectively. We plot, for the first time, the evolving normalized alternant macromolecular orientation. Moreover, to deepen our understanding of the macromolecular motions, we distinguish and study the two types of possible rotations, tumbling and wobbling.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.