Abstract

The present study aims to experimentally elucidate subtle structural features of the rat valve leaflet and the related nature of macromolecular transport across its endothelium and in its subendothelial space, information necessary to construct a rational theoretical model that can explain observation. After intravenous injection of horseradish peroxidase (HRP), we perfusion-fixed the aortic valve of normal Sprague-Dawley rats and found under light microscopy that HRP leaked through the leaflet's endothelium at very few localized brown spots, rather than uniformly. These spots grew nearly as rapidly with HRP circulation time before euthanasia as aortic spots, particularly when the time axis only included the time the valve was closed. These results suggest that macromolecular transport in heart valves depends not only on the direction normal to, but also parallel to, the endothelial surface and that convection, as well as molecular diffusion, plays an important role in macromolecular transport in heart valves. Transmission electron microscopy of traverse leaflet sections after 4-min HRP circulation showed a very thin ( approximately 150 nm), sparse layer immediately beneath the endothelium where the HRP concentration was much higher than that in the matrix below it. Nievelstein-Post et al.'s (Nievelstein-Post P, Mottino G, Fogelman A, Frank J. Arterioscler Thromb 14: 1151-1161, 1994) ultrarapid freezing/rotary shadow etching of the normal rabbit valve's subendothelial space supports the existence of this very thin, very sparse "valvular subendothelial intima," in analogy to the vascular subendothelial intima.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call