Abstract

The parasitic protozoal infections leishmaniasis, human African trypanosomiasis, and Chagas disease are neglected tropical diseases that pose serious health risks for much of the world's population. Current treatment options suffer from limitations, but plantderived natural products may provide economically advantageous therapeutic alternatives. Several germacranolide sesquiterpenoids have shown promising antiparasitic activities, but the mechanisms of activity have not been clearly established. The objective is to use in silico screening of known antiparasitic germacranolides against recognized protozoal protein targets in order to provide insight into the molecular mechanisms of activity of these natural products. Conformational analyses of the germacranolides were carried out using density functional theory, followed by molecular docking. A total of 88 Leishmania protein structures, 86 T. brucei protein structures, and 50 T. cruzi protein structures were screened against 27 antiparasitic germacranolides. The in-silico screening has revealed which of the protein targets of Leishmania spp., Trypanosoma brucei, and Trypanosoma cruzi are preferred by the sesquiterpenoid ligands.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.