Abstract

Sensing motors and supercapacitors are pivotal in empowering smart systems, honing energy management, and facilitating the seamless integration of responsive electronics. Harnessing the electrochemistry of methylcellulose-polyaniline (MC/PANI) composites, this research delves into their potential applications as reactive current sensing supercapacitors with single connectivity. The electrochemical traits of pristine polyaniline (PANI) and MC/PANI composites were analyzed and assessed for their potential applications in sensors and energy storage devices. With a specific capacitance of 300Fg−1, the MC/PANI_B3 composite-based device retained 87.01 % capacitance after 2000 cycles. Besides, based on electrical energy as the sensing parameter, the composite exhibited augmented cathodic and anodic current sensitivity of 8.77 mJmA−1 and -8.86 mJmA−1, respectively. The ameliorated supercapacitor and current sensing parameters of MC/PANI_B3 are ascribed to the percolation threshold content of the conducting phase, which is endowed with optimal hydrogen bond-mediated interactions with methylcellulose (MC), thus confers an expanded chain conformation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.