Abstract
This study examines the simplest relevant molecular model of a polymeric liquid in large-amplitude oscillatory shear (LAOS) flow: the suspension of rigid dumbbells in a Newtonian solvent. For such suspensions, the viscoelastic response of the polymeric liquid depends exclusively on the dynamics of dumbbell orientation. We have previously derived explicit analytical expressions for the shear rate amplitude and frequency dependences of the first and third harmonics of the alternating shear stress response in LAOS. Higher harmonics sculpt the shear stress, distorting it from its sinusoidal shape. In this work, we derive the polymer contribution to the shear stress response up to and including the next higher, fifth harmonic. For this, we use the fourth order term in the expansion of the orientation distribution to calculate the shear stress response. Our analysis employs the general method of Bird and Armstrong [J Chem Phys, 56, 3680 (1972)]. Our expression is the only one to have been derived from a molecular theory for a fifth harmonic. Our paper thus provides the first glimpse of the molecular origins of a shear stress harmonic higher than the third.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.