Abstract

Advances over the past few years have begun to enable prediction and design of macromolecular structures at near-atomic accuracy. Progress has stemmed from the development of reasonably accurate and efficiently computed all-atom potential functions as well as effective conformational sampling strategies appropriate for searching a highly rugged energy landscape, both driven by feedback from structure prediction and design tests. A unified energetic and kinematic framework in the Rosetta program allows a wide range of molecular modeling problems, from fibril structure prediction to RNA folding to the design of new protein interfaces, to be readily investigated and highlights areas for improvement. The methodology enables the creation of novel molecules with useful functions and holds promise for accelerating experimental structural inference. Emerging connections to crystallographic phasing, NMR modeling, and lower-resolution approaches are described and critically assessed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.