Abstract

Despite the intensive research in room-temperature phosphorescent (RTP) polymers, the synthesis of RTP polymers with well-defined macromolecular structures and multiple functions remains a challenge. Herein, reversible deactivation radical polymerization was demonstrated to offer a gradient copolymer (GCP) architecture with controlled heterogeneities, which combines hard segment and flexible segment. The GCPs would self-assemble into a multiphase nanostructure, featuring tunable stretchability, excellent RTP performance, and intrinsic healability without compromising light emission under stretching. The mechanical performance is tunable on demand with elongation at break ranging from 5.0% to 221.7% and Young's modulus ranging from 0.5 to 225.0 MPa.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call