Abstract

Huntington’s disease (HD) is a fatal neurodegenerative disease caused by an extended polyglutamine (polyQ) domain within the first exon of the huntingtin protein (htt). PolyQ expansion directly invokes the formation of a heterogenous mixture of toxic htt aggregates, including fibrils and oligomers. While htt is a cytosolic protein, it also associates with numerous membranous surfaces within the cell, leading to altered organelle morphology and dysfunction. Here, the impact of macromolecular crowding on htt aggregation in bulk solution and at solid/liquid or membrane/liquid interfaces was investigated. Dextran, Ficoll, and polyethylene glycol (PEG) were used as crowding agents. In bulk solution, crowding enhanced the heterogeneity of non-fibrillar aggregate species formed in a crowder dependent manner. However, crowding agents interfered with the deposition of htt fibrils on mica, suggesting that a crowded aqueous phase influences the interaction of htt with interfaces. By use of in situ atomic force microcopy (AFM), the aggregation of htt directly at mica and bilayer interfaces was tracked. The predominate aggregates type observed to form at the mica interface was fibrillar, but oligomeric aggregates of various stabilities were also observed. Crowding in the aqueous phase suppressed deposition and formation of htt aggregates on mica. In contrast, the addition of crowders enhanced deposition of htt aggregates onto supported total brain lipid extract (TBLE) bilayers. Different crowding agents led to distinct htt aggregates on supported bilayers with unique morphological impact on bilayer integrity. Collectively, these observations point to the complexity of htt aggregation at interfaces and that crowding in the aqueous phase profoundly influences this process.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call