Abstract

Anisotropic colloidal particles have the ability to self-assemble into cholesteric structures. We used molecular dynamics to simulate the self-assembly of ellipsoidal particles with the objective to establish a general framework to reveal the primary factors driving chiral interactions. To characterize these interactions, we introduce a characteristic parameter following the crowding factor (CF) theory. Our simulations and statistical analysis showed good agreement with the CF theory; at the early stages of the assembly process, the ellipsoidal particles go through a critical aggregation point followed by further clustering toward nematic order. Furthermore, we demonstrate that under high CF conditions, small initial clusters may induce a chiral twist, which subsequently forms a cholesteric structure with no directional preference in higher organization states.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call