Abstract
The cellular environment is crowded by macromolecules of various sizes, shapes, and charges, which modulate protein structure, function and dynamics. Herein, we contemplated the effect of three different macromolecular crowders: dextran-40, Ficoll-70 and PEG-35 on the structure, active-site conformational dynamics, function and relative domain movement of multi-domain human serum albumin (HSA). All the crowders used in this study have zero charges and similar sizes (at least in the dilute region) but different shapes and compositions. Some observations follow the traditional crowding theory. For example, all the crowders increased the α-helicity of HSA and hindered the conformational fluctuation dynamics. However, some observations are not in line with the expectations, such as an increase in the size of HSA with PEG-35 and uncorrelated domain movement of HSA with Ficoll-70 and PEG-35. The relative domain movement is correlated with the activity, suggesting that such moves are essential for protein function. The interaction between HSA and Ficoll-70 is proposed to be hydrophobic in nature. Overall, our results provide a somewhat systematic study of the shape-dependent macromolecular crowding effect on various protein properties and present a possible new insight into the mechanism of macromolecular crowding.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.