Abstract

The biological cell is known to exhibit a highly crowded milieu, which significantly influences protein aggregation and association processes. As several cell degenerative diseases are related to the self-association and fibrillation of amyloidogenic peptides, understanding of the impact of macromolecular crowding on these processes is of high biomedical importance. It is further of particular relevance as most in vitro studies on amyloid aggregation have been performed in diluted solution which does not reflect the complexity of their cellular surrounding. The study presented here focuses on the self-association of the type-2 diabetes mellitus related human islet amyloid polypeptide (hIAPP) in various crowded environments including network-forming macromolecular crowding reagents and protein crowders. It was possible to identify two competing processes: a crowder concentration and type dependent stabilization of globular off-pathway species and a – consequently - retarded or even inhibited hIAPP fibrillation reaction. The cause of these crowding effects was revealed to be mainly excluded volume in the polymeric crowders, whereas non-specific interactions seem to be most dominant in protein crowded environments. Specific hIAPP cytotoxicity assays on pancreatic β-cells reveal non-toxicity for the stabilized globular species, in contrast to the high cytotoxicity imposed by the normal fibrillation pathway. From these findings it can be concluded that cellular crowding is able to effectively stabilize the monomeric conformation of hIAPP, hence enabling the conduction of its normal physiological function and prevent this highly amyloidogenic peptide from cytotoxic aggregation and fibrillation.

Highlights

  • Over the last decade, phenomena of macromolecular crowding have increasingly gained attention in protein aggregation studies

  • The rIAPP peptide has been used as it is a nonamyloidogenic homologue of human islet amyloid polypeptide (hIAPP), which differs in only six out of 37 amino acids and persists in its monomeric conformation [33,34], so that changes in the diffusion constants can be solely ascribed to differences in crowding properties rather than to peptide aggregation

  • In solution with bovine serum albumin (BSA) nearly 50% of rIAPP and with lysozyme almost all rIAPP is bound to the protein, indicating that non-specific interactions have a substantial impact on IAPP constriction in these protein-crowded environments

Read more

Summary

Introduction

Phenomena of macromolecular crowding have increasingly gained attention in protein aggregation studies. BSA and lysozyme can essentially be regarded as hard spheres exhibiting sizes (radii) of rBSA

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call