Abstract

AbstractIn the present work, we revisit the effect of macromolecular crowding on the sizes of flexible neutral polymer chains. Motivated by recent experimental measurements on crowding effects on neutral flexible polymers chains, we perform Monte Carlo simulations on a model system consisting of hard spheres (HS) and a neutral flexible polymer chain. We find that, depending on the ratio of the sizes of the colloidal particles to the sizes of the polymer chain, and thus, on the extent of the colloid partitioning among the chain segments and the solution, the flexible polymeric coil may be either continuously compressed, or initially compressedfollowed by a reswellingat high enough colloid concentration. The chain behavior is thusnonmonotonic, a point which, apart from the work of Khalatur et al., has not so far been stressed in simulations of flexible polymer chains under crowding conditions. A thermodynamic model for the polymer–colloid interactions based on the Gibbs–Duhem equation and on a “Flory‐type” argument is also presented, emphasizing the indirect influence of macromolecular crowding on the monomers chemical potential. We show explicitly that under crowding conditions, the colloids are driven into the most compact coil states. These analytical results are compared with the results of the potential of mean force between the chain center of mass and the colloids obtained from the Monte Carlo simulations, and a reasonable agreement is found. The implications of the aforementioned results are further discussed in the context of biological systems, specially those for which macromolecular crowding is supposed to play the important role of including preferentially other (charged) macromolecules into the colloid‐compressed polymer phase.magnified image

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call