Abstract

The biochemical compositions (proteins, carbohydrates, and lipids) of phytoplankton provide useful information for their environmental growth conditions and nutritional status as a basic food source for upper trophic consumers. Concentrations of these compositions were assessed at 100, 30, and 1% light penetration depths within the euphotic zone in the Amundsen Sea, Antarctica, using colorimetric techniques. The major inorganic nutrients were generally abundant throughout the study area. The average chlorophyll a (chl-a) concentration was 49.2mgm−2 (S.D.=±27.6mgm−2) and large phytoplankton (>20µm) accounted for 64.1% of the total chl-a concentration. The biochemical compositions of the phytoplankton were not significantly different among different light depths or productivity stations. The overall compositions of proteins, carbohydrates, and lipids from all stations averaged 65.9% (S.D.=±12.5%), 22.4% (S.D.=±10.9%), and 11.7% (S.D.=±6.5%), respectively. Regardless of dominant phytoplankton species, nitrogen-abundant conditions sustained high protein compositions of phytoplankton in the Amundsen Sea during the cruise period. Based on the macromolecular compositions, the average food material (FM) concentration was 219.4μgL−1 (S.D.=±151.1μgL−1) and correlated positively with the primary productivity in the Amundsen Sea. High protein/carbohydrate ratios (>1) and large proportions of proteins suggest that phytoplankton provide nitrogen-sufficient foods to higher trophic consumers through a higher efficiency of protein carbon incorporated into herbivores.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call