Abstract

Oat (Avena sativa) is a cereal grain rich in fibers, proteins, vitamins and minerals. Oats have been linked to several health benefits, such as lowering blood cholesterol levels, counteracting cardiovascular disease and regulating blood sugar levels. This study aimed to characterize two new oat lines with high β-glucan content emanating from ethyl methyl sulphonate mutagenesis on the Lantmännen elite variety Belinda. Two of the mutated lines, and the mother variety Belinda, were profiled for β-glucan, arabinoxylan, total dietary fiber and starch composition. In addition, total lipid and protein content, amino acid composition and β-glucan molecular weights were analyzed. The high levels of β-glucan resulted in a significant increase in total dietary fiber, but no correlation could be established between higher or lower levels of the assayed macromolecules, i.e., between arabinoxylan-, starch-, lipid- or protein levels in the mutated lines compared to the reference. The results indicate separate biosynthetic pathways for β-glucans and other macromolecules and an independent regulation of the different polysaccharides studied. Therefore, ethyl methyl sulphonate mutagenesis can be used to increase levels of multiple macromolecules in the same line.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.