Abstract

Antimicrobial peptides are viewed as a promising alternative to conventional antibiotics, as their activity through membrane targeting makes them less prone to resistance development. Among them, antimicrobial D,L-α-cyclic peptides (CPs) have been proposed as an alternative, specially due to their cyclic nature and to the presence of D-α-amino acids that increases their resistance to proteases. In present work, second generation D,L-α-cyclic peptides with proven antimicrobial activity are shown to form complex macromolecular assemblies in the presence of membranes. We addressed the CPs:membrane interactions through a combination of experimental techniques (DSC and ATR-FTIR) with coarse-grained molecular dynamics (CG-MD) simulations, aiming at understanding their interactions, macromolecular assemblies and eventually unveil their mechanism of action. DSC shows that the interaction depends heavily on the negatively charge content of the membrane and on lipid/peptide ratio, suggesting different mechanisms for the different peptides and lipid systems. CG-MD proved that CPs can self-assemble at the lipid surface as nanotubes or micellar aggregates, depending on the peptide, in agreement with ATR-FTIR results. Finally, our results shed light into possible mechanisms of action of the peptides with pending hydrocarbon tail, namely membrane extensive segregation and/or membrane disintegration through the formation of disk-like lipid/peptide aggregates.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call