Abstract

This study investigates the effect of the macromolecular architecture of poly(vinylidene fluoride) (PVDF) on its thermally induced phase separation (TIPS) behavior and polymorphic crystallization in the PVDF/γ-butyrolactone (PVDF/γ-BL) system. Preparative PVDF fractions with specific macromolecular architecture and phase constitution are generated. The results show that PVDF's macromolecular architecture, particularly the degree of branching and regio-defects, plays a significant role in its temperature-dependent crystallization and resulting polymorphic phases. While regio-defects dominate crystallization in the temperature range between 30 and 25 °C, the degree of branching becomes decisive in the 25-20 °C interval. The developed fractions of PVDF are further analyzed in terms of their molecular weight distribution, revealing that the PVDF fractions crystallized out of solution have similar molecular weight distributions with lower dispersity compared with the feed polymer. These findings are crucial for macromolecular separation and adjustment of PVDF polymorphic properties and hence for the development of tailor-made PVDF matrix materials for composites and membranes. The findings suggest the possibility of polymorphous phase tailoring of PVDF based on macromolecular architecture due to temperature-controlled crystallization out of solution and strongly motivate further research to reveal deeper knowledge of regio-defect and branching influence of PVDF solution crystallization.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.