Abstract
Self-healing allows increasing the service life of materials by overcoming some issues caused by mechanical failures. We propose a new concept to impart room-temperature self-healing properties to thermoplastic elastomers. A macromolecular additive whose interacting units can interfere with the hard segments of the thermoplastic elastomer accelerates chain dynamics and imparts self-healing properties to the composite material with a limited detrimental effect on mechanical properties. By applying this concept to silicone-based elastomers, we have obtained an autonomously self-healing material with a relatively high elastic modulus for this type of elastomers.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.