Abstract

To investigate the relationship between agricultural antimicrobial use and resistance, a variety of methods for quantification of macrolide-lincosamide-streptogramin B (MLS(B)) resistance were applied to organic swine farm manure samples. Fluorescence in situ hybridization was used to indirectly quantify the specific rRNA methylation resulting in MLS(B) resistance. Using this method, an unexpectedly high prevalence of ribosomal methylation and, hence, predicted MLS(B) resistance was observed in manure samples from two swine finisher farms that reported no antimicrobial use (37.6% +/- 6.3% and 40.5% +/- 5.4%, respectively). A culture-based method targeting relatively abundant clostridia showed a lower but still unexpectedly high prevalence of resistance at both farms (27.7% +/- 11.3% and 11.7% +/- 8.6%, respectively), while the prevalence of resistance in cultured fecal streptococci was low at both farms (4.0%). These differences in the prevalence of resistance across microorganisms suggest the need for caution when extrapolating from data obtained with indicator organisms. A third antimicrobial-free swine farm, a breeder-to-finisher operation, had low levels of MLS(B) resistance in manure samples with all methods used (<9%). Tetracycline antimicrobials were detected in manure samples from one of the finisher farms and may provide a partial explanation for the high level of MLS(B) resistance. Taken together, these findings highlight the need for a more fundamental understanding of the relationship between antimicrobial use and the prevalence of antimicrobial resistance.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call