Abstract

A previous study on 12 in vitro -selected azithromycin-resistant Legionellapneumophila lineages showed that ribosomal mutations were major macrolide resistance determinants. In addition to these mechanisms that have been well described in many species, mutations upstream of lpeAB operon, homologous to acrAB in Escherichiacoli , were identified in two lineages. In this study, we investigated the role of LpeAB and of these mutations in macrolide resistance of L.pneumophila . The role of LpeAB was studied by testing the antibiotic susceptibility of WT, deleted and complemented L.pneumophila Paris strains. Translational fusion experiments using GFP as a reporter were conducted to investigate the consequences of the mutations observed in the upstream sequence of lpeAB operon. We demonstrated the involvement of LpeAB in an efflux pump responsible for a macrolide-specific reduced susceptibility of L.pneumophila Paris strain. Mutations in the upstream sequence of lpeAB operon were associated with an increased protein expression. Increased expression was also observed under sub-inhibitory macrolide concentrations in strains with both mutated and WT promoting regions. LpeAB are components of an efflux pump, which is a macrolide resistance determinant in L.pneumophila Paris strain. Mutations observed in the upstream sequence of lpeAB operon in resistant lineages led to an overexpression of this efflux pump. Sub-inhibitory concentrations of macrolides themselves participated in upregulating this efflux and could constitute a first step in the acquisition of a high macrolide resistance level.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.