Abstract

Biogenic structures created via feeding activities have varying effects on soft sediment communities, altering population dynamics, creating a temporal mosaic of successional patches, and ultimately increasing variation at different spatial scales. This study focused on assessing population responses to pits (P) and mounds (M) in an intertidal mudflat (River Plym, England) in order to determine (a) how these structures (max size 1400 cm 2), and their formation, affected infauna and (b) to what extent local variations in ambient communities may have affected infaunal responses. Densities in 0- and 1-week-old pits were significantly lower than in ambient and mound areas for most of the dominant infauna over the study period. Abundances were higher in mounds for some species and responses to both structures differed among juveniles and adults. Recovery to ambient levels in P–M systems took about 3 weeks, although their physical characteristics only lasted about 2 weeks. Correlations among ambient densities and adjacent P–M systems were mixed, but suggested decoupling between local ambient and P–M dynamics for some taxa either in relation to age of the patch and/or size of the individuals. At the community level, local differences appeared to be a significant source of variation in new pits, but differences were swamped out when recruitment was high. Differences were more evident in older P–M systems. These results show that sources of local variation in infaunal dynamics can be attributed to a combination of small-scale disturbance/recovery processes and spatially and temporally changing ambient conditions. Identifying extant spatial and temporal small-scale variation can be a critical component of understanding and interpreting larger-scale dynamics of soft-sediment systems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.