Abstract

Biologists have long sought to quantify the number of species on Earth. Often missing from these efforts is the contribution of microorganisms, the smallest but most abundant form of life on the planet. Despite recent large-scale sampling efforts, estimates of global microbial diversity span many orders of magnitude. It is important to consider how speciation and extinction over the last 4 billion years constrain inventories of biodiversity. We parameterized macroevolutionary models based on birth-death processes that assume constant and universal speciation and extinction rates. The models reveal that richness beyond 1012 species is feasible and in agreement with empirical predictions. Additional simulations suggest that mass extinction events do not place hard limits on modern-day microbial diversity. Together, our study provides independent support for a massive global-scale microbiome while shedding light on the upper limits of life on Earth.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.