Abstract

The fundamental problem in ecology is the relationship between organisms and the physical world. This question is approached through the study of ecosystems as wholes. Pristine, autonomous Arctic lakes provide an invaluable starting point for such investigations. Studies on these lakes, initiated in 1958, indicate that the dominant fish populations assume a recognizable and repeatable structure, which if not disturbed by external forces, is maintained indefinitely. The observable characteristics are high biomass, large individual size, great age, uniformity of individuals despite great variation in age, and relatively few juveniles. This configuration expresses a state of least specific energy dissipation or least specific entropy production and may be regarded as a standing wave in the energy flow. Similar characteristics were found in the dominant species in a wide range of ecosystems worldwide. A state of least dissipation develops when two energy transport processes interfere with each other in the vicinity of thermodynamic equilibrium. Thus it is postulated that living organisms originated through the agonistic interaction between two energy transport processes within materials, initially occurring in an environment close to thermodynamic equilibrium. These two processes, fundamental to energy transfer, are recognized as the principle of least action and its diametrical opposite, the principle of most action. Each force dominates system behavior in a different time frame: most action in the short-term (ecological time) and least action over the long-term (evolutionary time). Interaction between the countervailing forces provides an understanding of a wide range of emergent ecological generalities such as succession, r- and K-selection, the stability and diversity of ecosystems, and the directionality of evolutionary change.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.