Abstract

In continuation of the screening of South African seaweeds to identify potential candidates for the development of pharmaceutically active functional foods, we investigated the inhibitory effects of a crude 80 % methanol extract, solvent fractions and isolated compounds from the kelp Macrocystis angustifolia against enzymes involved in type 2 diabetes and dementia. Repeated column fractionation of the ethyl acetate fraction of the crude extract of M. angustifolia afforded two phenol derivatives identified by spectroscopic analyses (1D and 2D NMR): 4-(2-hydroxyethyl)phenol (tyrosol) (1) and 4-(1,2-dihydroxyethyl)phenol (2). These compounds were isolated from a marine alga for the first time. The ethyl acetate (IC50 = 14.08 ± 1.21 μg mL−1) and butanol (IC50 = 77.94 ± 11.69 μg mL−1) fractions exhibited potent inhibition against α-glucosidase and acetylcholinesterase (AChE) enzymes, respectively. Tyrosol (1) and its derivative, 4-(1,2-dihydroxyethyl)phenol (2), showed potent inhibition against both α-glucosidase and AChE enzymes. Based on in silico evaluation, these two compounds are anticipated to possess sufficient oral bioavailability in accordance to the Lipinski Rule of Five without any toxicity risk. Natural α-glucosidase and AChE inhibitors from M. angustifolia offer a novel approach to control type 2 diabetes and dementia.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.