Abstract

Fast and selective recognition of molecules at the nanometer scale without labeling is a much desired but still challenging goal to achieve. Here, we show the use of high-speed atomic force microscopy (HS-AFM) for real-time and real-space recognition of unlabeled membrane receptors using tips conjugated with small synthetic macrocyclic peptides. The single-molecule recognition method is validated by experiments on the human hepatocyte growth factor receptor (hMET), which selectively binds to the macrocyclic peptide aMD4. By testing and comparing aMD4 synthesized with linkers of different lengths and rigidities, we maximize the interaction between the functionalized tip and hMET added to both a mica surface and supported lipid bilayers. Phase contrast imaging by HS-AFM enables us to discriminate nonlabeled hMET against the murine MET homologue, which does not bind to aMD4. Moreover, using ligands and linkers of small size, we achieve minimal deterioration of the spatial resolution in simultaneous topographic imaging. The versatility of macrocyclic peptides in detecting unlimited types of membrane receptors with high selectivity and the fast imaging by HS-AFM broaden the range of future applications of this method for molecular recognition without labeling.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.