Abstract

AbstractNon‐fullerene acceptors have shown great promise for organic solar cells (OSCs). However, challenges in achieving high efficiency molecular system with conformational unicity and effective molecular stacking remain. In this study, we present a new design of non‐fused tetrathiophene acceptor R4T‐1 via employing the encapsulation of tetrathiophene with macrocyclic ring. The single crystal structure analysis reveals that cyclic alkyl side chains can perfectly encapsulate the central part of molecule and generate a conformational stable and planar molecular backbone. Whereas, the control 4T‐5 without the encapsulation restriction displays cis‐ and twisted conformation. As a result, R4T‐1 based OSCs achieved an outstanding power conversion efficiency (PCE) exceeding 15.10 % with a high short‐circuit current density (Jsc) of 25.48 mA/cm2, which is significantly improved by ≈30 % in relative to that of the control. Our findings demonstrate that the macrocyclic encapsulation strategy could assist fully non‐fused electron acceptors (FNEAs) to achieve a high photovoltaic performance and pave a new way for FNEAs design.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.