Abstract

AbstractWhereas the reaction of 1,4‐bis(2‐bromoethyloxy)benzene (4) with paraformaldehyde in the presence of BF3·Et2O afforded exclusively the cyclopentameric pillar[5]arene derivative (5), both cyclopenta‐ and cyclohexameric macrocycles 5 and 6 were obtained when the reaction of 4 with paraformaldehyde was performed at 45 °C in CHCl3 with FeCl3 as the catalyst. Treatment of compounds 4–6 with sodium azide provided the corresponding polyazides, to which a cyanobiphenyl building block was subsequently grafted to generate model compound 1, pillar[5]arene 2, and pillar[6]arene 3, bearing two, ten and twelve mesomorphic subunits, respectively. The liquid‐crystalline and thermal properties of the compounds were investigated by polarized optical microscopy (POM), differential scanning calorimetry (DSC), and X‐ray diffraction (XRD). Comparison of the liquid‐crystalline properties of macrocycles 2 and 3 with those of 1 revealed the strong influence of the macrocyclic pillar[n]arene core on the mesomorphic properties. Whereas only a monotropic mesophase was observed for 1, a broad enantiotropic mesophase was evidenced for both pillar[n]arene derivatives.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.