Abstract

The structural dynamics of two pairs of [2]rotaxanes were compared using variable-temperature NMR. Each rotaxane had a surrounding tetralactam macrocycle with either 2,6-pyridine dicarboxamide or isophthalamide bridging units. Differences were observed in two types of rotational processes: spinning of the phenylene wall units in the surrounding macrocycle of squaraine rotaxanes and macrocycle pirouetting in xanthone rotaxanes. The rotaxanes with macrocycles containing 2,6-pyridine dicarboxamide bridges exhibited higher rotational barriers due to a cavity contraction effect, which disfavored macrocycle breathing.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call