Abstract

Loss of eelgrass (Zostera marina) habitat from temperate estuaries worldwide often coincides with increased macroalgal accumulations resulting from increased delivery of anthropogenic nitrogen. We conducted macroalgal enclosure/exclosure experiments dur- ing summer 1998 within eelgrass populations in two estuaries of Waquoit Bay, Massachu- setts, USA, to evaluate how increased macroalgal biomass affects density, recruitment, growth rate, and production of eelgrass. One estuary featured a low nitrogen loading rate and sustained a relatively pristine eelgrass population with a 2 cm high macroalgal canopy. The other estuary had a sixfold higher nitrogen loading rate and a declining eelgrass population with a 9 cm high macroalgal canopy. Experimental units were 1 X 1 m plots of eelgrass fenced within 50 cm high plastic mesh that excluded or included macroalgae at canopy heights ranging from 0 to 25 cm. In both estuaries, rates of eelgrass loss increased, largely a result of decreased recruitment, and growth rates decreased (due to decreased rates of leaf appearance) with increasing macroalgal canopy height. Aboveground summer production in both estuaries decreased exponentially as macroalgal canopy heights in- creased. We conclude that macroalgal cover is a proximate cause for loss of eelgrass in the higher N estuary since, upon removal of macroalgae, we observed an increase in shoot density, a 55% increase in summer growth, and a 500% increase in summer aboveground net production. Based on summer growth data and density of shoots in our experimental plots the following spring, we suggest that the negative impacts of macroalgal canopies persist, but also that eelgrass recovery upon removal of macroalgae may be possible. To identify the mechanisms by which macroalgae potentially inhibit eelgrass production, we measured changes in nutrient and oxygen concentrations resulting from macroalgal canopies and estimated the relative importance of summer standing stocks of phytoplankton, epiphytes, and macroalgae to potential shading of eelgrass in both estuaries. We document both (1) unfavorable biogeochemical conditions (lowered redox conditions and potentially toxic concentrations of NH4+) imposed by the presence of macroalgal canopies and (2) potential light limitation of eelgrass by standing stocks of producers in the higher N estuary, with estimates of light reduction via macroalgae numerically more important than light sequestration by phytoplankton and epiphytes for newly recruiting shoots. Increased ma- croalgal biomass associated with increased nitrogen loading to estuaries can lead to eelgrass disappearance, and we identify an approximate 9-12-cm critical macroalgal canopy height at which eelgrass declines.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call