Abstract

Shear stress is an important physical factor that regulates proliferation, migration, and morphogenesis. In particular, the homeostasis of blood vessels is dependent on shear stress. To mimic this process ex vivo, efforts have been made to seed scaffolds with vascular and other cell types in the presence of growth factors and under pulsatile flow conditions. However, the resulting bioreactors lack information on shear stress and flow distributions within the scaffold. Consequently, it is difficult to interpret the effects of shear stress on cell function. Such knowledge would enable researchers to improve upon cell culture protocols. Recent work has focused on optimizing the microstructural parameters of the scaffold to fine tune the shear stress. In this study, we have adopted a different approach whereby flows are redirected throughout the bioreactor along channels patterned in the porous scaffold to yield shear stress distributions that are optimized for uniformity centered on a target value. A topology optimization algorithm coupled to computational fluid dynamics simulations was devised to this end. The channel topology in the porous scaffold was varied using a combination of genetic algorithm and fuzzy logic. The method is validated by experiments using magnetic resonance imaging readouts of the flow field.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.