Abstract
Passive daytime radiative cooling (PDRC) is a simple and effective cooling approach that does not consume any extra energy just by highly reflecting shortwave sunlight and highly radiating infrared heat through the atmospheric windows. In recent years, the application of photonic coolers and metamaterials for PDRC has been studied. However, they usually have complex processes and high precision requirements, which seriously limit large-scale fabrication. In this paper, a high-performance polyvinylidene difluoride-hexafluoropropylene (PVDF-HFP) PDRC fiber film was prepared by a simple and efficient electrospinning method combined with phase separation, and the obtained PVDF-HFP fibers have a cauliflower-shaped macro-nanoporous structure. The cauliflower-shaped structure provides more scattering sites of the fibers, and the fiber film with the macro-nanoporous morphology has a high scattering ability in the solar region, resulting in a high solar reflectivity of 99.65%. The PVDF-HFP porous film possesses an emissivity of 90.44% in the atmospheric window, and it can reach a maximum cooling temperature of 10.2 °C during the daytime. In addition, the excellent mechanical strength provides a guarantee for its large-scale practical application. This study offers an effective improvement strategy for the spectral performance of polymer fiber films, which is meaningful for green cooling management and reduction of carbon emission.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.